

Marine Studies Initiative Building Site Selection

Site Selection Criteria

Building Principles

Locate student housing above inundation zone

Design buildings for seismic resiliency and to allow evacuation

Collaborate with Tsunami Evacuation Plan Partners

Exceed current seismic design codes using state-of-art criteria & options

Serve as a coastal and global model of earthquake readiness and tsunami preparedness

Site Selection Process Overview

2015 – January 2016 February 2016 – May 2016 May 2016

Chris Poland's Work on Earthquake & Tsunami Considerations

Third Party Evaluation of HMSC & Two Alternative Sites

Recommendation to President Ray

Outreach Plan: Engage and Receive Input from Faculty, Coastal Community Stakeholders, State and Federal Agencies & Commissions

Marine Studies Initiative Building Earthquake & Tsunami Considerations

Chris D. Poland, Consulting Engineer
Member of the National
Academy of Engineering

Roz Estime'Estime' Science & Technology
Facilities Planners

The Earthquake and Tsunami Threats

OPEN-FILE REPORT 0-13-19

TSUNAMI INUNDATION SCENARIOS FOR OREGON

by George R. Priest¹, Robert C. Witter², Y. Joseph Zhang³, Kelin Wang⁴, Chris Goldfinger⁵, Laura L. Stimely¹, John T. English⁶, Sean G. Pickner⁷, Kaleena L.B. Hughes⁷, Taylore E. Wille⁷, and Rachel L. Smith⁷

Chris Goldfinger reported that the probability of a Tsunami at the MSI site is 39% to 58% over the next 100 Years

^{*}Department of Geology and Mining Industries (DOGAMI)

Initiate Expanded Horizontal Evacuation Planning

- Plan for DOGAMI "XXL" event
- Include City of Newport representatives & South Beach businesses and residents
- Improve efficiency and completeness through new technology and with ADA input
- Seek a path to safety for every occupant
 - Determine routes to Safe Haven Hill and Community College using OSU modeling
 - Consider vertical evacuation structures
- Seek state & local funding for route improvements
- Develop & implement South Beach-wide evacuation plan

Initiate the Design Process

- Model cost/schedule for relocating HSMC to high ground
- Commission site specific studies of:
 - strong shaking
 - liquefaction, subsidence and lateral spreading potential
 - tsunami inundation potential,
 - identification of debris sources and the potential for large ship impacts at the HSMC site
- Determine MSI activities that can be accomplished on high ground
- Develop design alternatives for MSI facilities at HMSC
 - Minimum seismic code
 - Repairable after "L" level inundation
- Determine feasibility and cost to provide vertical evacuation
- Use triple-bottom line analysis
- Design and construct the selected solution

Panel Discussion

Moderator

• Dean Scott Ashford, Dean of the College of Engineering

Panelists

- Jack Barth, MSI Co-Chair & CEOAS Professor and Associate Dean for Research
- Chris Goldfinger, Professor of Geology and Geophysics, CEOAS
- Dan Cox, Professor of Civil and Construction Engineering, COE
- David Gomberg, Oregon State Representative, District 10

OSU's Marine Studies Initiative Jack Barth and Bob Cowen, Co-Leads

Opportunity – Develop a World-Class Marine Studies Program

Vision

Through its *Marine Studies Initiative*, Oregon State will be recognized as a global leader in 21st century transdisciplinary education and research and lead the development of inclusive strategies for successful stewardship of our ocean and planet for today and the future.

Mission

The mission of the *Marine Studies Initiative* is to create a healthy future for our oceans and the planet through transdisciplinary research and teaching that emphasizes collaboration, experiential learning and problem solving.

Programmatic Goals and Requirements

- Extend OSU's education, research, and outreach mission to the coast
- 500 full-time equivalent students annually in Newport by 2025: 400 undergraduate,
 100 graduate
 - Classroom, laboratory, innovation and collaboration spaces
 - Housing (will be outside tsunami inundation zone)
- Maximize OSU's past and future investments in marine-related education, research, and outreach and engagement at the coast
 - Hatfield Marine Science Center
 - Guin Library
 - Visitor's Center (free-choice learning laboratory)
 - Ship Operations docks
 - Community partnerships
- Enhance researchers and students "access to sea" in all its forms: estuarine and coastal waters; boats; agency scientists; adjacent classrooms and seawater facilities; etc.)

Programmatic Goals and Requirements

Goal: Build a collaborative environment that fosters synergy

- Convergence and collaboration
 - "Researchers from centers with unbroken, co-located office and laboratory space reported an 'innovation outcome' measure higher than researchers from centers occupying split spaces" (*NRC, 2014)
 - Degree of collaboration, including enhanced research grant success and innovation, directly proportional to distance (**Kabo et al. 2015)
- Examples of collaboration include
 - Sea Grant Visitors Center as a free-choice laboratory
 - Marine mammal research and underwater acoustics
 - Renewable energy and ecological impacts
 - Conservation biology and genomics

Goal: Demonstrate how to build safety in a seismically active region; opportunity for public education through high visitation numbers at HMSC visitors center

^{*} National Research Council. 2014. *Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond*. Washington, DC: The National Academies Press.

The coming Cascadia Great Earthquake: How did we get here?

Chris Goldfinger

College of Oceanic and Atmospheric Sciences, Oregon State University

Active Tectonics Group, Ocean Admin Bldg 104, Corvallis OR 97333

gold@coas.oregonstate.edu

C. Hans Nelson+, Joel E. Johnson*, Steve Galer, Jeffrey Beeson, Bran Black, Ann E. Morey*, Julia Gutiérrez-Pastor+, Eugene Karabanov**, Andrew T. Eriksson*°, Rob Witter and George Priest of, Eulàlia Gràcia****, Kelin Wang***, Joseph Zhang of Gita Dunhill**, Jason Patton*, Randy Enkin***, Audrey Dallimore***, Tracy Valliers, and the Shipboard Scientific Parties (52 students, colleagues, technicians)

Cascadia Earthquake History

10.000 years long.
30 years of
investigation. 100+
investigators.

43 earthquakes in total.

32 of them affect
the Newport area;
ranging from 7.4-9.2
in magnitude
(estimated).
Average repeat time
= ~320 years. Time
since last: 316
years.

Probability in the next 50 years is ~ 18-22%.

(Goldfinger et al. in revision 2016)

This is what success looks like in a Great Earthquake. Japan lost ~ 20,000 on 3/11/11.

It could have been 230,000 as in Sumatra 2004.

This is what success looks like in a Great Earthquake. Japan lost ~ 20,000.

It could have been 230,000 as in Sumatra.

The Hatfield site is a liquefiable sandbar, with 2m of fill on top. It's barely above high tide.

We can't say what size tsunami will be next, it could be 6-10 ft, or it could be >30 ft as in Tohoku.

The land will likely subside 3-6 ft during the earthquake.

What would Mayor Sato do?

Daniel Cox

Professor, School of Civil and Construction Engineering

Tsunami Life Safety; Tsunami Engineering and Resilience

Tsunami Life Safety and CSZ Event

- 1. Survive anticipated earthquake
- 2. Evacuate to high ground
 - Tsunami arrives at HMSC in 30 minutes
 - Education to reduce "milling time"
 - Safe Haven Hill on foot as first option
 - Evacuees stay in place for 24 hours
 - Consideration for assisting disabled
 - Vertical evacuation as unplanned alternative

Disaster Resilience

What we care about

- 1. People
- 2. Infrastructure
 - a. Buildings
 - b. Transportation
 - c. Power
 - d. Communication
 - e. Water

Tsunami Depth at HMSC for Life Safety (XXL) and Resilience (L)

Important technical challenges to reduce risk for life safety and to increase resilience

Panel Discussion

Moderator

Dean Scott Ashford, Dean of the College of Engineering

Panelists

- Jack Barth, MSI Co-Chair & CEOAS Professor and Associate Dean for Research
- Chris Goldfinger, Professor of Geology and Geophysics, CEOAS
- Dan Cox, Professor of Civil and Construction Engineering, COE
- David Gomberg, Oregon State Representative, District 10